import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data
 
  mnist = input_data.read_data_sets(".", one_hot=True)
 
  INPUT_PARAMETERS = 784 L1_PARAMETERS = 300 W1 = tf.Variable(tf.truncated_normal([INPUT_PARAMETERS, L1_PARAMETERS], stddev=0.1)) b1 = tf.Variable(tf.truncated_normal([L1_PARAMETERS], stddev=0.1)) W2 = tf.Variable(tf.truncated_normal([L1_PARAMETERS, 10], stddev=0.1)) b2 = tf.Variable(tf.truncated_normal([10], stddev=0.1))
 
  x = tf.placeholder(tf.float32, [None, INPUT_PARAMETERS]) y_ = tf.placeholder(tf.float32, [None, 10])
 
  hidden1 = tf.nn.sigmoid(tf.matmul(x, W1) + b1) y =  tf.matmul(hidden1, W2) + b2
 
  loss = (tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(     logits=y, labels=y_))) train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
 
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
  loss_array = [] accuracy_array = [] with tf.Session() as sess:     tf.global_variables_initializer().run()     for i in range(10000):         batch_xs, batch_ys = mnist.train.next_batch(100)         _, step_loss = sess.run([train_step, loss], feed_dict={x: batch_xs, y_: batch_ys})         if i % 500 == 0:             step_accuracy = accuracy.eval({x: mnist.test.images, y_: mnist.test.labels})             loss_array.append(step_loss)             accuracy_array.append(step_accuracy)             print(step_loss, step_accuracy)
  loss_array.append(step_loss) accuracy_array.append(step_accuracy) print(step_loss, step_accuracy)
  plt.plot([i*500 for i in range(len(loss_array))], loss_array, 'b-',           [i*500 for i in range(len(accuracy_array))], accuracy_array, 'r-')
 
 
  |